
Practical Differential Profiling

Martin Schulz and Bronis R. de Supinski
{schulzm,bronis}@llnl.gov

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

PO Box 808, L-560, Livermore, CA 94551, USA

Abstract. Comparing performance profiles from two runs is an essen-
tial performance analysis step that users routinely perform. In this work
we present eGprof, a tool that facilitates these comparisons through dif-
ferential profiling inside gprof. We chose this approach, rather than de-
signing a new tool, since gprof is one of the few performance analysis
tools accepted and used by a large community of users.
eGprof allows users to “subtract” two performance profiles directly. It
also includes callgraph visualization to highlight the differences in graph-
ical form. Along with the design of this tool, we present several case stud-
ies that show how eGprof can be used to find and to study the differences
of two application executions quickly and hence can aid the user in this
most common step in performance analysis. We do this without requir-
ing major changes on the side of the user, the most important factor in
guaranteeing the adoption of our tool by code teams.

1 Motivation

Users can choose from a large variety of performance analysis tools to op-
timize their parallel applications, like TAU [1], Vampir [7], Paradyn [6], or
Open|SpeedShop [9] to name just a few. However, it is our experience from work-
ing with code teams both at Lawrence Livermore National Laboratory (LLNL)
and beyond that those tools are best suited to performance analysis experts.
They provide rich functionality that naturally implies a somewhat steep learn-
ing curve. Since members of the code teams focus on adding functionality to their
applications that increase the science they can achieve, they only have limited
time to spend on performance optimization (often only 1 or 2 weeks of effort per
year across the entire team). Thus, they encounter the learning curve with each
use and choose to use relatively simple tools for that reason.

In this work we therefore pursue a different approach to improve performance
tools for these occasional performance tool users. Rather than developing a new
tool with more advanced functionality, we analyzed the usage patterns of those
tools that are already accepted by the code teams and determined their main
deficiencies with respect to their common usage pattern based on user feedback.

This work was performed under the auspices of the U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48 (UCRL-CONF-227812).

Based on this analysis, we are augmenting these tools to suit those usage pat-
terns better while retaining their ease-of-use. Our new toolset can be deployed
transparently to the user without requiring any workflow or instrumentation
changes on their side since it merely provides additional functionality. It will
therefore easily find acceptance by a large group of users.

In this work, we apply this strategy to profiling of parallel applications with
gprof, a command line driven profiler that is installed on almost all systems.
While it is limited in its scope, it has found a large acceptance among our code
teams because of its simplicity, wide installation base, and existing support by
almost any compiler. However, gprof (like most other profiling tools) does not
provide any direct support for the most common analysis step used in profiling:
the comparison of executions, e.g., before and after coding changes intended to
improve performance. Instead the user is left with having to compare large text
logs of profiles manually, which is both tedious and error-prone.

We therefore extend the gprof toolset to include differential profiling allowing
the user to directly compare two execution profiles as well as callgraphs from two
different application executions. In addition, we provide a graphical representa-
tion of both individual and differential callgraphs to visualize the often complex
information encoded in gprof’s callgraph results.

Combined, this provides an easy way to study the impact of code optimiza-
tions and parameter changes, as well as code properties both within one rank
and across ranks. We will demonstrate this using four case studies covering var-
ious scenarios for single and multi-node performance analysis. In all cases, our
extensions concisely present the key differences between individual executions in
a few lines without the need for long manual searches.

2 Related Work

Only few tools support differential or comparative performance analysis. One of
the exceptions is Open|SpeedShop [9], a recently developed performance toolset
for Linux clusters, which includes the ability to align and contrast results from
multiple runs. Further, Karavanic has investigated difference operators for per-
formance event maps in Paradyn [6] as part of her Ph.D. thesis [4].

Both the PerfDMF [3] and the PerfTrack [5] projects provide a base in-
frastructure capable of supporting differential performance analysis. They both
deploy relational databases to store the results of performance analysis across
multiple runs. This data can later be queried and then compared using external
tools.

Most other tools, however, only have the ability to work with data gathered
during a single run and hence the user is left with the task to contrast the
individual results manually. Due to the complexity and size of performance data,
in particular from large scale parallel applications, this often tedious task risks
missing key aspects.

3 eGprof: Differential Profiling with gprof

Differential profiling is a useful tool in many scenarios. However, to make it
practical and accepted by code teams, it is important to provide a tool that
is familiar to users as well as easy to use. To achieve these goals we decided
to integrate the concept of differential profiling into gprof, which is part of the
GNU binutils package. Thus, it is available on almost any UNIX based system,
familiar to users, and already in use by most code teams.

Our design follows two main guidelines: any extension must a) be optional
and cannot alter the default behavior of the tool and b) follow the main philos-
ophy of the original gprof. These guidelines ensure the tool can be transparently
deployed and is easy to use, which ensures acceptance by existing gprof users.

eGprof, our extended gprof, provides two major new features that aid differ-
ential profiling: the ability to subtract two profiles from each other and thereby
to show their differences; and the visualization of both single and differential
callgraphs.

3.1 Profile Subtraction

To use the unmodified gprof users must instrument their code using the -pg

switch. The resulting binary then produces a gmon.out file containing the execu-
tion profile. gprof reads this profile along with the symbol information contained
in the binary itself and produces both an execution profile and a dynamic call-
graph in a textual representation.

To enable differential profiling, we allow the user to “subtract” a second pro-
file from a baseline. Both profiles are collected in the same way and specified
as command line options1. In this case, we first load both profiles individually,
create the performance histogram and the callgraph information as in the orig-
inal gprof, and associate the performance data (both the “positive” data from
the baseline profile and the “negative” data from the second one) with the cor-
responding symbols.

We then align the two histograms, subtract the respective timing information
for each symbol, and then store the newly created histogram. To generate the
common callgraph, we first start with the baseline or “positive” graph. For each
edge in the “negative” graph that is already present in the baseline graph we
subtract the number associated with this edge, i.e., the number of times this
edge was traversed at runtime, from the value associated with the existing edge.
If the edge does not already exist, we add it, but record the negative of the
associated number for this edge. In both cases, histogram and callgraph, we
must take special care of zero values: in contrast to the original gprof in which
zero means no performance information and hence can be removed, a zero in
eGprof means that the performance in the two profiles is equal, which is relevant
information that must be retained.

1 Note if only a baseline profile is specified, eGprof behaves exactly like the original
gprof ensuring that this addition is fully transparent.

% cumulative self self total
time seconds seconds calls s/call s/call name
50.37 5.51 5.51 31 0.18 0.18 f_d
29.16 8.70 3.19 1 3.19 8.52 f_c
10.51 9.85 1.15 main
9.96 10.94 1.09 1 1.09 1.27 f_b

% cumulative self self total
time seconds seconds calls s/call s/call name
35.28 3.08 3.08 main
23.37 5.12 2.04 22 0.09 0.09 f_d
21.88 7.03 1.91 1 1.91 3.76 f_c
19.47 8.73 1.70 1 1.70 1.89 f_b

% cumulative self self total
time seconds seconds calls s/call s/call name
47.60 3.47 3.47 9 0.39 0.39 f_d

-26.47 5.40 -1.93 main
17.56 6.68 1.28 0 -1.28 -4.76 f_c
-8.37 7.29 -0.61 0 0.61 0.62 f_b

% +self -self diff +self -self diff sym
impact seconds seconds seconds calls calls calls +- name
47.60 5.51 2.04 3.47 31 22 9 XX f_d

-26.47 1.15 3.08 -1.93 - - 0 XX main
17.56 3.19 1.91 1.28 1 1 0 XX f_c
-8.37 1.09 1.70 -0.61 1 1 0 XX f_b

Fig. 1. Histograms for two executions (top two); differential histograms in old (third)
and new format (bottom).

This basic approach works as long as both input profiles originate from ex-
ecutions of the same binary and hence are associated with the same symbol
information. In many usage scenarios, e.g., for the evaluation of code optimiza-
tions, however, each profile is generated from a separate executable. In such a
case, we require the user to specify the second binary along with its profile. We
then load the symbol tables from each binary, but keep them in separate data
structures since each binary potentially has different code regions associated
with the same symbol. Instead we sort and align the two symbol tables against
each other, and then link matching symbols.

In both cases we print the resulting differential profile in the existing gprof

format, as shown in Figure 1. The top two histograms show two profiles of a demo
program with different parameters and the third histogram shows the generated
differential analysis. It shows, for example, that 47.6% of all performance changes
were caused by a runtime decrease in routine f d of 3.47 seconds, while f b and
main ran slower in the second execution by 1.93 and 0.61 seconds respectively.

By maintaining the output format, users can continue to use any evaluation
scripts that parse the gprof output or external visualization tools that postpro-
cess the output (e.g., xprofiler). Since this format is, however, not easily readable
we also provide the option to print the resulting analysis in a new, more detailed
format that further eases the manual analysis of the results and also includes
the information from the separate profiles for easy comparison. The bottom his-
togram in figure 1 shows the results of the above profile in the new format. For
the remainder of the paper we will use this new format for illustration purposes.

Fig. 2. Callgraphs of two executions (left, middle); differential callgraph (right).

3.2 Visualizing Callgraphs

gprof also provides dynamic callgraph information for all instrumented code
pieces. However, this format is often difficult to read and adding differential
information makes it even more complex. We therefore added support for call-
graph visualization. On request, eGprof exports the callgraph as a GML (Graphic
Markup Language) file. Figure 2 shows an example using the same data as above.
The nodes represent the individual functions in the executable, and the edges
show all calls between functions executed by the program together with the call
frequency. Optionally, the size of the node can show both the scaled inclusive
(height) and exclusive (width) time the code spent in this routine.

The left and the middle graph show the original execution profiles of the
sample program and the right graph shows the differential callgraph. The latter
is color coded to illustrate the direction of changes between the two original
callgraphs. Again we see the large changes in f d as well as in the exclusive time
of main. Additionally, the graph shows an unchanged call frequency from main

to f b and f c, while the second execution called f d one more time from f b, but
ten times less from f c.

By enabling eGprof to write GML files rather then visualizing the data itself,
we ensure that the existing gprof maintains its command line philosophy and
remains simple and easy to use. The created GML files can be visualized with
any GML capable viewer. We use the freely available tool yed 2 for all graphs in
this paper.

4 Case Studies

Differential profiles can be used in many scenarios. In the following we present
several case studies on parallel applications showing the use of eGprof for both
single and multi-node performance analysis. All experiments were conducted on

2 http://www.yworks.com/en/products yed about.htm

mcr, a large scale cluster installed at LLNL. Each node consists of two Intel Xeon
CPUs running at 2.4 GHz and is equipped with 4 GB of main memory. All nodes
are connected using Quadrics’s QsNet II (Elan3). The system runs CHAOS 3, a
Linux distribution developed at LLNL. It is based on Red Hat’s RHEL 4, but
is optimized for high performance computing and provides a specialized MPI
implementation for the Quadrics interconnect. All codes are compiled with gcc
3.4.4 and use -O2 (unless otherwise noted) and -pg to activate the performance
profiling in gcc. System libraries, including the MPI implementation, however,
are unmodified and used as is, i.e., they are fully optimized and not compiled
with -pg.

4.1 Single Node Performance

Performance Optimization: Performance optimization is usually an iterative
process of selecting an appropriate optimization method, applying it to the code
and then analyzing the performance of the newly generated code in comparison
to the original one. The latter step is essential for understanding the impact of
the chosen optimization and for selecting the one for the next step. This process
is greatly aided by our differential profiling approach.

We show an example of this use on SMG2000, a Semicoarsining Multi-
grid Solver based on the hypre library [2]. We compile the base version of
the application using the -O2 flag and then optimize by allowing inlining us-
ing -O2 -finline. Figure 3 shows the resulting output for the top ten rou-
tines. While the performance only marginally improves, we clearly see that
the 69536 invocations of hypre ExchangeLocalData were inlined by the com-
piler eliminating all calls to this routine in the second version. The callgraph
(omitted due to space constraints) shows that this routine was originally called
by hypre InitializeCommunication and the histogram correspondingly shows an
increase in time spent in this routine due to the inlining. The top 2 routines,
however, benefit from inlining, most likely due to compiler optimizations enabled
by the inlined routines.

Understanding Parameter Impact: Many applications have a large set of
tunable algorithm parameters that enable the adjustment of codes to new plat-

% +self -self diff +self -self diff sym
impact sec. sec. sec. calls calls calls +- name

21.65 55.25 54.83 0.42 6247 6247 0 XX hypre_SMGResidual
7.73 33.68 33.53 0.15 4881 4881 0 XX hypre_CyclicReduction
5.15 0.10 --- 0.10 69536 - 69536 XX hypre_ExchangeLocalData
5.15 2.89 2.79 0.10 1176 1176 0 XX hypre_SemiInterp
5.15 0.82 0.72 0.10 980 980 0 XX hypre_StructAxpy
4.12 0.65 0.57 0.08 1014 1014 0 XX hypre_CycRedSetupCoarseOp
4.12 0.48 0.40 0.08 168 168 0 XX hypre_StructVectorClearGhostValues
-4.12 0.66 0.74 -0.08 336 336 0 XX hypre_StructVectorSetConstantValues
-3.61 0.05 0.12 -0.07 69536 69536 0 XX hypre_InitializeCommunication
2.58 0.42 0.37 0.05 84 84 0 XX hypre_SMGSetupInterpOp

Fig. 3. Comparing performance of SMG2000 with and without inlining.

% +self -self diff +self -self diff sym
impact sec. sec. sec. calls calls calls +- name

60.72 536.56 --- 536.56 - - 0 XX ATL_dupKBmm10_10_2_b1
-22.51 --- 198.88 -198.88 - - 0 XX ATL_dJIK80x80x80TN80x80x0_a1_b1
-10.80 --- 95.46 -95.46 - - 0 XX ATL_dJIK0x0x20TN20x20x0_a1_bX

1.60 14.12 --- 14.12 - - 0 XX ATL_dJIK0x0x10TN10x10x0_a1_bX
0.60 20.15 14.86 5.29 500 50 450 XX HPL_dlaswp00N
-0.43 --- 3.79 -3.79 - - 0 XX ATL_dJIK0x0x20TN1x1x20_a1_bX
-0.40 --- 3.57 -3.57 - - 0 XX ATL_dJIK0x0x50TN50x50x0_a1_bX
-0.34 4.51 7.48 -2.97 - - 0 XX ATL_dtrsmKLLNU
-0.33 --- 2.89 -2.89 - - 0 XX ATL_dupMBmm0_1_0_b1_loopa
0.23 4.22 2.23 1.99 - - 0 XX ATL_dcol2blk_a1
-0.22 --- 1.95 -1.95 - - 0 XX ATL_dJIK0x0x26TN26x26x0_a1_bX
-0.17 0.47 1.97 -1.50 - - 0 XX ATL_drow2blkT_a1
0.16 1.41 --- 1.41 - - 0 XX ATL_dJIK0x0x10TN1x1x10_a1_bX
0.13 8.98 7.82 1.16 2 2 0 XX HPL_pdmatgen
0.12 14.22 13.15 1.07 55042118 50541398 4500720 XX HPL_lmul
-0.11 --- 0.95 -0.95 - - 0 XX ATL_dupNBmm61_1_1_b1_loopa
-0.08 0.05 0.79 -0.74 - - 0 XX ATL_dcopy

Fig. 4. Comparing two executions of HPL with different blocksizes.

forms or target problems. However, complex interactions among the parameters
as well as with the target architecture often makes understanding their impact
difficult. Differential profiling can help analyze the impact of parameter varia-
tions.

The High Performance LINPACK (HPL) [8] benchmark developed at the
University of Tennessee uses a two-dimensional, block-cyclic data distribution
and LU factorization with row partial pivoting featuring multiple look-ahead
depths. Details of the algorithm can be fine-tuned with a large range of param-
eters. However, only rough guidelines exist on how to choose the best settings
for a given target architecture, forcing the user to rely on hand-tuning for each
platform.

In our experiment we use a constant problem size of N=5000 and vary one
of the most significant parameters, the blocking size NB between 10 and 100,
which causes more than a factor of two difference in performance. Figure 4
presents the differential profile for NB=10 and NB=100. It shows that HPL
uses a drastically different set of routines in the underlying BLAS library for its
computation depending on the value of NB3. This difference is further illustrated
in the excerpt of the callgraph shown in Figure 5.

4.2 Cross-Node Performance

Understanding Load Balancing: The efficiency of parallel applications de-
pends to a large degree on correct load balancing, i.e., ensuring that all tasks
have roughly the same amount of work and hence do not incur long wait times
at synchronization points. Comparing performance profiles of different ranks is
one way to check for correct load balancing.

3 The missing call number information is caused by calling the ATLAS library (all
routines starting with ATL) since this library was preinstalled and not compiled
with -pg.

Fig. 5. Differential callgraph for HPL with varying block sizes.

To illustrate this point we use Sweep3D from the ASCI Blue Benchmark
suite. This code solves a 1-group time-independent discrete ordinates 3D carte-
sian geometry neutron transport problem. We run this code with 32 processes
and create a separate profile for each rank. Using eGprof we then compare two
representative tasks4, in this case 0 and 1.

Figure 6 shows that the execution profiles of the individual ranks of Sweep3D
are very similar indicating a well balanced code. All routines are called the same
number of times (except for the timing routine, which is only called on the master
node, rank 0) and the time spent in each routine is nearly identical.

Synchronous vs. Asynchronous Communication Synchronous communi-
cation in parallel programs can lead to long blocking delays. In some cases this
delay can be hidden using non-blocking communication calls: these routines al-
low send and receive operations to start without immediately waiting for their
completion. Instead the call returns and the application can overlap computation
with the message transfer.

We show the effects of non-blocking communication by contrasting the per-
formance of a synchronous and an asynchronous version of SMG2000. For this
experiment we statically link the MPI library to the application (to give eGprof

4 All rank combinations exhibit similar behavior.

% +self -self diff +self -self diff sym
impact seconds seconds seconds calls calls calls +- name

-98.69 975.14 981.94 -6.80 12 12 0 XX sweep_
-0.58 2.20 2.24 -0.04 12 12 0 XX flux_err_
-0.15 0.00 0.01 -0.01 1 1 0 XX initgeom_
0.15 0.96 0.95 0.01 1 1 0 XX initialize_
0.15 0.01 0.00 0.01 1 1 0 XX inner_auto_
-0.15 0.00 0.01 -0.01 1440 1440 0 XX snd_real_
0.15 18.06 18.05 0.01 12 12 0 XX source_
0.00 --- --- 0.00 2 - 2 XX timers
0.00 --- --- 0.00 2 - 2 XX timers_
0.00 0.00 0.00 0.00 1 1 0 XX MAIN__

Fig. 6. Comparing rank 0 and 1 of Sweep3D.

% +self -self diff +self -self diff sym
impact seconds seconds seconds calls calls calls +- name

-19.09 614.20 640.62 -26.42 263328 263328 0 XX hypre_SMGResidual
7.70 15.90 5.24 10.66 - - 0 XX elan_tportBufFree_locked
5.27 12.11 4.82 7.29 - - 0 XX elan_tportGCBufPool
5.19 55.36 48.18 7.18 - - 0 XX elan_progressFragLists
4.94 331.77 324.93 6.84 14144 205728 -191584 XX hypre_CyclicReduction
-4.54 44.23 50.51 -6.28 - - 0 XX MPIR_Unpack2
-4.39 --- 6.08 -6.08 - - 0 XX PMPI_Irecv
3.87 5.35 --- 5.35 - - 0 XX PMPI_Recv
3.37 70.38 65.72 4.66 - - 0 XX elan_pollWord
2.65 28.65 24.99 3.66 - - 0 XX elan_tportRxStart

Fig. 7. Comparing synchronous and asynchronous communication in SMG2000.

access to its symbols) and execute both versions using 32 processes. We then
add the data from all ranks into a single profile for each run using gprof’s sum
option and contrast the two global profiles.

The resulting differential profile in Figure 7 shows that the first version uses
blocking receives (MPI Recv), while the second version uses the non-blocking
counterpart (MPI Irecv). The performance difference between those two calls
is, however, negligible since these routines merely start the receive. The actual
operation is conducted inside Quadric’s Elan library, for which the first version
shows longer execution times due to the blocking operations. The main computa-
tion routine (hypre SMGResidual), however, executes slower in the non-blocking
version. This is caused by the concurrent message transfer in the Elan library.
Overall, however, the non-blocking version performs better showing that the
code benefits from this style of communication.

4.3 Discussion

The case studies discussed above show that differential profiling can help users to
quickly identify the key difference between two application executions, typically
by just looking at the top ten or fifteen routines in the profile. Without this fea-
ture, users must manually examine the entire profile for both runs and match up
the symbols, which may be presented in a different order, to understand execu-
tion time differences completely. For SMG2000, a relatively simple benchmark,
the gprof output has around 370 lines for the histogram and over 2700 for the
callgraph. Realistic applications with millions of lines of code, as are typical in
environments like national laboratories, generate significantly more output so
manual comparison is intractable. Together with the callgraph visualization, our
eGprof implementation automates this activity to support quick comparison of
any two performance profiles.

5 Conclusions

Code teams demand easy solutions in familiar environments for their perfor-
mance analyses. They usually do not have the time to learn complex and new

tools, which instead are normally used by a few selected users specializing in per-
formance optimization. We therefore take the approach to analyze those simple
tools that are accepted and in use by our code teams and add missing function-
ality that directly aids their typical workflow.

Following this approach, we designed and implemented eGprof, an extension
of the popular and widely available gprof profiler. Our version adds support for
differential profiling to enable a quick and efficient comparison of the perfor-
mance observed during two executions, the most common step in performance
analysis. Further we support callgraph visualization to give users a quick graph-
ical overview of the performance of their codes and the differences between two
executions. In our cases studies we showed how these new features can signif-
icantly aid both single and multi-node performance analysis. In all cases, the
output of eGprof was able to point to the key difference between application
executions within the top 15 routines of the resulting profile.

Our eGprof implementation gives code teams access to powerful performance
analysis techniques in a familiar environment. It does not require any new setup
or performance measuring techniques on their side and therefore guarantees the
lowest possible learning curve and easy acceptance.

References

1. R. Bell, A. Malony, and S. Shende. ParaProf: A Portable, Extensible, and Scalable
Tool for Parallel Performance Profile Analysis. In Proceedings of the International
Conference on Parallel and Distributed Computing (Euro-Par 2003), pages 17–26,
Aug. 2003.

2. R. Falgout and U. Yang. hypre: a Library of High Performance Preconditioners.
In Proceedings of the International Conference on Computational Science (ICCS),
Part III, LNCS vol. 2331, pages 632–641, Apr. 2002.

3. K. Huck, A. Malony, R. Bell, and A. Morris. Design and Implementation of a
Parallel Performance Data Management Framework. In Proceedings of the 2005
International Conference on Parallel Processing, Aug. 2005.

4. K. Karavanic. Experiment Management Support for Parallel Performance Tuning.
PhD thesis, Department of Computer Science, University of Wisconsin, 1999.

5. K. Karavanic, J. May, K. Mohror, B. Miller, K. Huck, R. Knapp, and B. Pugh.
Integrating Database Technology with Comparison-Based Parallel Performance Di-
agnosis: The PerfTrack Performance Experiment Management Tool. In Proceedings
of IEEE/ACM Supercomputing ’05, Nov. 2001.

6. B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic,
K. Kunchithapadam, and T. Newhall. The Paradyn Parallel Performance Mea-
surement Tool. IEEE Computer, 28(11):37–46, Nov. 1995.

7. W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchenbach. VAMPIR:
Visualization and analysis of MPI resources. Supercomputer, 12(1):69–80, 1996.

8. A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. Hpl - a portable implementa-
tion of the high-performance linpack be nchmark for distributed-memory computers.
Available at http://www.netlib.org/benchmark/hpl/.

9. The Open|SpeedShop Team. Open|SpeedShop for Linux.
http://www.openspeedshop.org/, Nov. 2006.

